This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The inverse of an isomorphism is invers to the isomorphism.
(Contributed by AV, 9-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
invisoinv.b |
|
|
|
invisoinv.i |
|
|
|
invisoinv.n |
|
|
|
invisoinv.c |
|
|
|
invisoinv.x |
|
|
|
invisoinv.y |
|
|
|
invisoinv.f |
|
|
Assertion |
invisoinvr |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invisoinv.b |
|
| 2 |
|
invisoinv.i |
|
| 3 |
|
invisoinv.n |
|
| 4 |
|
invisoinv.c |
|
| 5 |
|
invisoinv.x |
|
| 6 |
|
invisoinv.y |
|
| 7 |
|
invisoinv.f |
|
| 8 |
1 2 3 4 5 6 7
|
invisoinvl |
|
| 9 |
1 3 4 5 6
|
invsym |
|
| 10 |
8 9
|
mpbird |
|