This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem raleqdv

Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005)

Ref Expression
Hypothesis raleqdv.1 φ A = B
Assertion raleqdv φ x A ψ x B ψ

Proof

Step Hyp Ref Expression
1 raleqdv.1 φ A = B
2 raleq A = B x A ψ x B ψ
3 1 2 syl φ x A ψ x B ψ