This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Well-founded recursion
frrlem5
Metamath Proof Explorer
Description: Lemma for well-founded recursion. State the well-founded recursion
generator in terms of the acceptable functions. (Contributed by Scott
Fenton , 27-Aug-2022)
Ref
Expression
Hypotheses
frrlem5.1
⊢ B = f | ∃ x f Fn x ∧ x ⊆ A ∧ ∀ y ∈ x Pred R A y ⊆ x ∧ ∀ y ∈ x f ⁡ y = y G f ↾ Pred R A y
frrlem5.2
⊢ F = frecs ⁡ R A G
Assertion
frrlem5
⊢ F = ⋃ B
Proof
Step
Hyp
Ref
Expression
1
frrlem5.1
⊢ B = f | ∃ x f Fn x ∧ x ⊆ A ∧ ∀ y ∈ x Pred R A y ⊆ x ∧ ∀ y ∈ x f ⁡ y = y G f ↾ Pred R A y
2
frrlem5.2
⊢ F = frecs ⁡ R A G
3
df-frecs
⊢ frecs ⁡ R A G = ⋃ f | ∃ x f Fn x ∧ x ⊆ A ∧ ∀ y ∈ x Pred R A y ⊆ x ∧ ∀ y ∈ x f ⁡ y = y G f ↾ Pred R A y
4
1
unieqi
⊢ ⋃ B = ⋃ f | ∃ x f Fn x ∧ x ⊆ A ∧ ∀ y ∈ x Pred R A y ⊆ x ∧ ∀ y ∈ x f ⁡ y = y G f ↾ Pred R A y
5
3 2 4
3eqtr4i
⊢ F = ⋃ B