This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Equivalence relations
eqvrelsym
Metamath Proof Explorer
Description: An equivalence relation is symmetric. (Contributed by NM , 4-Jun-1995)
(Revised by Mario Carneiro , 12-Aug-2015) (Revised by Peter Mazsa , 2-Jun-2019)
Ref
Expression
Hypotheses
eqvrelsym.1
⊢ φ → EqvRel R
eqvrelsym.2
⊢ φ → A R B
Assertion
eqvrelsym
⊢ φ → B R A
Proof
Step
Hyp
Ref
Expression
1
eqvrelsym.1
⊢ φ → EqvRel R
2
eqvrelsym.2
⊢ φ → A R B
3
eqvrelrel
⊢ EqvRel R → Rel ⁡ R
4
relbrcnvg
⊢ Rel ⁡ R → B R -1 A ↔ A R B
5
1 3 4
3syl
⊢ φ → B R -1 A ↔ A R B
6
2 5
mpbird
⊢ φ → B R -1 A
7
eqvrelsymrel
⊢ EqvRel R → SymRel R
8
dfsymrel2
⊢ SymRel R ↔ R -1 ⊆ R ∧ Rel ⁡ R
9
8
simplbi
⊢ SymRel R → R -1 ⊆ R
10
1 7 9
3syl
⊢ φ → R -1 ⊆ R
11
10
ssbrd
⊢ φ → B R -1 A → B R A
12
6 11
mpd
⊢ φ → B R A