This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem eqvrelsymrel

Description: An equivalence relation is symmetric. (Contributed by Peter Mazsa, 29-Dec-2021)

Ref Expression
Assertion eqvrelsymrel EqvRel R SymRel R

Proof

Step Hyp Ref Expression
1 df-eqvrel EqvRel R RefRel R SymRel R TrRel R
2 1 simp2bi EqvRel R SymRel R