This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqvrelsym.1 | |- ( ph -> EqvRel R ) |
|
| eqvrelsym.2 | |- ( ph -> A R B ) |
||
| Assertion | eqvrelsym | |- ( ph -> B R A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelsym.1 | |- ( ph -> EqvRel R ) |
|
| 2 | eqvrelsym.2 | |- ( ph -> A R B ) |
|
| 3 | eqvrelrel | |- ( EqvRel R -> Rel R ) |
|
| 4 | relbrcnvg | |- ( Rel R -> ( B `' R A <-> A R B ) ) |
|
| 5 | 1 3 4 | 3syl | |- ( ph -> ( B `' R A <-> A R B ) ) |
| 6 | 2 5 | mpbird | |- ( ph -> B `' R A ) |
| 7 | eqvrelsymrel | |- ( EqvRel R -> SymRel R ) |
|
| 8 | dfsymrel2 | |- ( SymRel R <-> ( `' R C_ R /\ Rel R ) ) |
|
| 9 | 8 | simplbi | |- ( SymRel R -> `' R C_ R ) |
| 10 | 1 7 9 | 3syl | |- ( ph -> `' R C_ R ) |
| 11 | 10 | ssbrd | |- ( ph -> ( B `' R A -> B R A ) ) |
| 12 | 6 11 | mpd | |- ( ph -> B R A ) |