This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqvrelsym.1 | ⊢ ( 𝜑 → EqvRel 𝑅 ) | |
| eqvrelsym.2 | ⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) | ||
| Assertion | eqvrelsym | ⊢ ( 𝜑 → 𝐵 𝑅 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelsym.1 | ⊢ ( 𝜑 → EqvRel 𝑅 ) | |
| 2 | eqvrelsym.2 | ⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) | |
| 3 | eqvrelrel | ⊢ ( EqvRel 𝑅 → Rel 𝑅 ) | |
| 4 | relbrcnvg | ⊢ ( Rel 𝑅 → ( 𝐵 ◡ 𝑅 𝐴 ↔ 𝐴 𝑅 𝐵 ) ) | |
| 5 | 1 3 4 | 3syl | ⊢ ( 𝜑 → ( 𝐵 ◡ 𝑅 𝐴 ↔ 𝐴 𝑅 𝐵 ) ) |
| 6 | 2 5 | mpbird | ⊢ ( 𝜑 → 𝐵 ◡ 𝑅 𝐴 ) |
| 7 | eqvrelsymrel | ⊢ ( EqvRel 𝑅 → SymRel 𝑅 ) | |
| 8 | dfsymrel2 | ⊢ ( SymRel 𝑅 ↔ ( ◡ 𝑅 ⊆ 𝑅 ∧ Rel 𝑅 ) ) | |
| 9 | 8 | simplbi | ⊢ ( SymRel 𝑅 → ◡ 𝑅 ⊆ 𝑅 ) |
| 10 | 1 7 9 | 3syl | ⊢ ( 𝜑 → ◡ 𝑅 ⊆ 𝑅 ) |
| 11 | 10 | ssbrd | ⊢ ( 𝜑 → ( 𝐵 ◡ 𝑅 𝐴 → 𝐵 𝑅 𝐴 ) ) |
| 12 | 6 11 | mpd | ⊢ ( 𝜑 → 𝐵 𝑅 𝐴 ) |