This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1osn.1 | ||
| f1osn.2 | |||
| Assertion | f1osn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1osn.1 | ||
| 2 | f1osn.2 | ||
| 3 | 1 2 | fnsn | |
| 4 | 2 1 | fnsn | |
| 5 | 1 2 | cnvsn | |
| 6 | 5 | fneq1i | |
| 7 | 4 6 | mpbir | |
| 8 | dff1o4 | ||
| 9 | 3 7 8 | mpbir2an |