This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Subspaces and spans in a left module
ellspsn3
Metamath Proof Explorer
Description: A member of the span of the singleton of a vector is a member of a
subspace containing the vector. ( elspansn3 analog.) (Contributed by NM , 4-Jul-2014)
Ref
Expression
Hypotheses
lspsnss.s
⊢ S = LSubSp ⁡ W
lspsnss.n
⊢ N = LSpan ⁡ W
ellspsn3.w
⊢ φ → W ∈ LMod
ellspsn3.u
⊢ φ → U ∈ S
ellspsn3.x
⊢ φ → X ∈ U
ellspsn3.y
⊢ φ → Y ∈ N ⁡ X
Assertion
ellspsn3
⊢ φ → Y ∈ U
Proof
Step
Hyp
Ref
Expression
1
lspsnss.s
⊢ S = LSubSp ⁡ W
2
lspsnss.n
⊢ N = LSpan ⁡ W
3
ellspsn3.w
⊢ φ → W ∈ LMod
4
ellspsn3.u
⊢ φ → U ∈ S
5
ellspsn3.x
⊢ φ → X ∈ U
6
ellspsn3.y
⊢ φ → Y ∈ N ⁡ X
7
1 2
lspsnss
⊢ W ∈ LMod ∧ U ∈ S ∧ X ∈ U → N ⁡ X ⊆ U
8
3 4 5 7
syl3anc
⊢ φ → N ⁡ X ⊆ U
9
8 6
sseldd
⊢ φ → Y ∈ U