This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Axiom of Choice equivalents
dfac0
Metamath Proof Explorer
Description: Equivalence of two versions of the Axiom of Choice. The proof uses the
Axiom of Regularity. The right-hand side is our original ax-ac .
(Contributed by Mario Carneiro , 17-May-2015)
Ref
Expression
Assertion
dfac0
⊢ CHOICE ↔ ∀ x ∃ y ∀ z ∀ w z ∈ w ∧ w ∈ x → ∃ v ∀ u ∃ t u ∈ w ∧ w ∈ t ∧ u ∈ t ∧ t ∈ y ↔ u = v
Proof
Step
Hyp
Ref
Expression
1
dfac7
⊢ CHOICE ↔ ∀ x ∃ y ∀ z ∈ x ∀ w ∈ z ∃! v ∈ z ∃ u ∈ y z ∈ u ∧ v ∈ u
2
aceq0
⊢ ∃ y ∀ z ∈ x ∀ w ∈ z ∃! v ∈ z ∃ u ∈ y z ∈ u ∧ v ∈ u ↔ ∃ y ∀ z ∀ w z ∈ w ∧ w ∈ x → ∃ v ∀ u ∃ t u ∈ w ∧ w ∈ t ∧ u ∈ t ∧ t ∈ y ↔ u = v
3
2
albii
⊢ ∀ x ∃ y ∀ z ∈ x ∀ w ∈ z ∃! v ∈ z ∃ u ∈ y z ∈ u ∧ v ∈ u ↔ ∀ x ∃ y ∀ z ∀ w z ∈ w ∧ w ∈ x → ∃ v ∀ u ∃ t u ∈ w ∧ w ∈ t ∧ u ∈ t ∧ t ∈ y ↔ u = v
4
1 3
bitri
⊢ CHOICE ↔ ∀ x ∃ y ∀ z ∀ w z ∈ w ∧ w ∈ x → ∃ v ∀ u ∃ t u ∈ w ∧ w ∈ t ∧ u ∈ t ∧ t ∈ y ↔ u = v