This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Axiom of Choice equivalents
dfac7
Metamath Proof Explorer
Description: Equivalence of the Axiom of Choice (first form) of Enderton p. 49 and
our Axiom of Choice (in the form of ac2 ). The proof does not depend
on AC but does depend on the Axiom of Regularity. (Contributed by Mario
Carneiro , 17-May-2015)
Ref
Expression
Assertion
dfac7
⊢ CHOICE ↔ ∀ x ∃ y ∀ z ∈ x ∀ w ∈ z ∃! v ∈ z ∃ u ∈ y z ∈ u ∧ v ∈ u
Proof
Step
Hyp
Ref
Expression
1
dfac2
⊢ CHOICE ↔ ∀ x ∃ y ∀ z ∈ x z ≠ ∅ → ∃! w ∈ z ∃ v ∈ y z ∈ v ∧ w ∈ v
2
aceq2
⊢ ∃ y ∀ z ∈ x ∀ w ∈ z ∃! v ∈ z ∃ u ∈ y z ∈ u ∧ v ∈ u ↔ ∃ y ∀ z ∈ x z ≠ ∅ → ∃! w ∈ z ∃ v ∈ y z ∈ v ∧ w ∈ v
3
2
albii
⊢ ∀ x ∃ y ∀ z ∈ x ∀ w ∈ z ∃! v ∈ z ∃ u ∈ y z ∈ u ∧ v ∈ u ↔ ∀ x ∃ y ∀ z ∈ x z ≠ ∅ → ∃! w ∈ z ∃ v ∈ y z ∈ v ∧ w ∈ v
4
1 3
bitr4i
⊢ CHOICE ↔ ∀ x ∃ y ∀ z ∈ x ∀ w ∈ z ∃! v ∈ z ∃ u ∈ y z ∈ u ∧ v ∈ u