This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Axiom of Choice equivalents
dfac1
Metamath Proof Explorer
Description: Equivalence of two versions of the Axiom of Choice ax-ac . The proof
uses the Axiom of Regularity. The right-hand side expresses our AC with
the fewest number of different variables. (Contributed by Mario
Carneiro , 17-May-2015)
Ref
Expression
Assertion
dfac1
⊢ CHOICE ↔ ∀ x ∃ y ∀ z ∀ w z ∈ w ∧ w ∈ x → ∃ x ∀ z ∃ x z ∈ w ∧ w ∈ x ∧ z ∈ x ∧ x ∈ y ↔ z = x
Proof
Step
Hyp
Ref
Expression
1
dfac7
⊢ CHOICE ↔ ∀ x ∃ y ∀ z ∈ x ∀ w ∈ z ∃! v ∈ z ∃ u ∈ y z ∈ u ∧ v ∈ u
2
aceq1
⊢ ∃ y ∀ z ∈ x ∀ w ∈ z ∃! v ∈ z ∃ u ∈ y z ∈ u ∧ v ∈ u ↔ ∃ y ∀ z ∀ w z ∈ w ∧ w ∈ x → ∃ x ∀ z ∃ x z ∈ w ∧ w ∈ x ∧ z ∈ x ∧ x ∈ y ↔ z = x
3
2
albii
⊢ ∀ x ∃ y ∀ z ∈ x ∀ w ∈ z ∃! v ∈ z ∃ u ∈ y z ∈ u ∧ v ∈ u ↔ ∀ x ∃ y ∀ z ∀ w z ∈ w ∧ w ∈ x → ∃ x ∀ z ∃ x z ∈ w ∧ w ∈ x ∧ z ∈ x ∧ x ∈ y ↔ z = x
4
1 3
bitri
⊢ CHOICE ↔ ∀ x ∃ y ∀ z ∀ w z ∈ w ∧ w ∈ x → ∃ x ∀ z ∃ x z ∈ w ∧ w ∈ x ∧ z ∈ x ∧ x ∈ y ↔ z = x