This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Groups
p-Groups and Sylow groups; Sylow's theorems
df-od
Metamath Proof Explorer
Definition df-od
Description: Define the order of an element in a group. (Contributed by Mario
Carneiro , 13-Jul-2014) (Revised by Stefan O'Rear , 4-Sep-2015)
(Revised by AV , 5-Oct-2020)
Ref
Expression
Assertion
df-od
⊢ od = g ∈ V ⟼ x ∈ Base g ⟼ ⦋ n ∈ ℕ | n ⋅ g x = 0 g / i ⦌ if i = ∅ 0 inf i ℝ <
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cod
class od
1
vg
setvar g
2
cvv
class V
3
vx
setvar x
4
cbs
class Base
5
1
cv
setvar g
6
5 4
cfv
class Base g
7
vn
setvar n
8
cn
class ℕ
9
7
cv
setvar n
10
cmg
class ⋅ 𝑔
11
5 10
cfv
class ⋅ g
12
3
cv
setvar x
13
9 12 11
co
class n ⋅ g x
14
c0g
class 0 𝑔
15
5 14
cfv
class 0 g
16
13 15
wceq
wff n ⋅ g x = 0 g
17
16 7 8
crab
class n ∈ ℕ | n ⋅ g x = 0 g
18
vi
setvar i
19
18
cv
setvar i
20
c0
class ∅
21
19 20
wceq
wff i = ∅
22
cc0
class 0
23
cr
class ℝ
24
clt
class <
25
19 23 24
cinf
class inf i ℝ <
26
21 22 25
cif
class if i = ∅ 0 inf i ℝ <
27
18 17 26
csb
class ⦋ n ∈ ℕ | n ⋅ g x = 0 g / i ⦌ if i = ∅ 0 inf i ℝ <
28
3 6 27
cmpt
class x ∈ Base g ⟼ ⦋ n ∈ ℕ | n ⋅ g x = 0 g / i ⦌ if i = ∅ 0 inf i ℝ <
29
1 2 28
cmpt
class g ∈ V ⟼ x ∈ Base g ⟼ ⦋ n ∈ ℕ | n ⋅ g x = 0 g / i ⦌ if i = ∅ 0 inf i ℝ <
30
0 29
wceq
wff od = g ∈ V ⟼ x ∈ Base g ⟼ ⦋ n ∈ ℕ | n ⋅ g x = 0 g / i ⦌ if i = ∅ 0 inf i ℝ <