This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Groups
p-Groups and Sylow groups; Sylow's theorems
df-gex
Metamath Proof Explorer
Description: Define the exponent of a group. (Contributed by Mario Carneiro , 13-Jul-2014) (Revised by Stefan O'Rear , 4-Sep-2015) (Revised by AV , 26-Sep-2020)
Ref
Expression
Assertion
df-gex
⊢ gEx = g ∈ V ⟼ ⦋ n ∈ ℕ | ∀ x ∈ Base g n ⋅ g x = 0 g / i ⦌ if i = ∅ 0 inf i ℝ <
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cgex
class gEx
1
vg
setvar g
2
cvv
class V
3
vn
setvar n
4
cn
class ℕ
5
vx
setvar x
6
cbs
class Base
7
1
cv
setvar g
8
7 6
cfv
class Base g
9
3
cv
setvar n
10
cmg
class ⋅ 𝑔
11
7 10
cfv
class ⋅ g
12
5
cv
setvar x
13
9 12 11
co
class n ⋅ g x
14
c0g
class 0 𝑔
15
7 14
cfv
class 0 g
16
13 15
wceq
wff n ⋅ g x = 0 g
17
16 5 8
wral
wff ∀ x ∈ Base g n ⋅ g x = 0 g
18
17 3 4
crab
class n ∈ ℕ | ∀ x ∈ Base g n ⋅ g x = 0 g
19
vi
setvar i
20
19
cv
setvar i
21
c0
class ∅
22
20 21
wceq
wff i = ∅
23
cc0
class 0
24
cr
class ℝ
25
clt
class <
26
20 24 25
cinf
class inf i ℝ <
27
22 23 26
cif
class if i = ∅ 0 inf i ℝ <
28
19 18 27
csb
class ⦋ n ∈ ℕ | ∀ x ∈ Base g n ⋅ g x = 0 g / i ⦌ if i = ∅ 0 inf i ℝ <
29
1 2 28
cmpt
class g ∈ V ⟼ ⦋ n ∈ ℕ | ∀ x ∈ Base g n ⋅ g x = 0 g / i ⦌ if i = ∅ 0 inf i ℝ <
30
0 29
wceq
wff gEx = g ∈ V ⟼ ⦋ n ∈ ℕ | ∀ x ∈ Base g n ⋅ g x = 0 g / i ⦌ if i = ∅ 0 inf i ℝ <