This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Definition and basic properties
df-fbas
Metamath Proof Explorer
Description: Define the class of all filter bases. Note that a filter base on one
set is also a filter base for any superset, so there is not a unique
base set that can be recovered. (Contributed by Jeff Hankins , 1-Sep-2009) (Revised by Stefan O'Rear , 11-Jul-2015)
Ref
Expression
Assertion
df-fbas
⊢ fBas = w ∈ V ⟼ x ∈ 𝒫 𝒫 w | x ≠ ∅ ∧ ∅ ∉ x ∧ ∀ y ∈ x ∀ z ∈ x x ∩ 𝒫 y ∩ z ≠ ∅
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cfbas
class fBas
1
vw
setvar w
2
cvv
class V
3
vx
setvar x
4
1
cv
setvar w
5
4
cpw
class 𝒫 w
6
5
cpw
class 𝒫 𝒫 w
7
3
cv
setvar x
8
c0
class ∅
9
7 8
wne
wff x ≠ ∅
10
8 7
wnel
wff ∅ ∉ x
11
vy
setvar y
12
vz
setvar z
13
11
cv
setvar y
14
12
cv
setvar z
15
13 14
cin
class y ∩ z
16
15
cpw
class 𝒫 y ∩ z
17
7 16
cin
class x ∩ 𝒫 y ∩ z
18
17 8
wne
wff x ∩ 𝒫 y ∩ z ≠ ∅
19
18 12 7
wral
wff ∀ z ∈ x x ∩ 𝒫 y ∩ z ≠ ∅
20
19 11 7
wral
wff ∀ y ∈ x ∀ z ∈ x x ∩ 𝒫 y ∩ z ≠ ∅
21
9 10 20
w3a
wff x ≠ ∅ ∧ ∅ ∉ x ∧ ∀ y ∈ x ∀ z ∈ x x ∩ 𝒫 y ∩ z ≠ ∅
22
21 3 6
crab
class x ∈ 𝒫 𝒫 w | x ≠ ∅ ∧ ∅ ∉ x ∧ ∀ y ∈ x ∀ z ∈ x x ∩ 𝒫 y ∩ z ≠ ∅
23
1 2 22
cmpt
class w ∈ V ⟼ x ∈ 𝒫 𝒫 w | x ≠ ∅ ∧ ∅ ∉ x ∧ ∀ y ∈ x ∀ z ∈ x x ∩ 𝒫 y ∩ z ≠ ∅
24
0 23
wceq
wff fBas = w ∈ V ⟼ x ∈ 𝒫 𝒫 w | x ≠ ∅ ∧ ∅ ∉ x ∧ ∀ y ∈ x ∀ z ∈ x x ∩ 𝒫 y ∩ z ≠ ∅