This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Stefan O'Rear, 11-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fbas | ⊢ fBas = ( 𝑤 ∈ V ↦ { 𝑥 ∈ 𝒫 𝒫 𝑤 ∣ ( 𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfbas | ⊢ fBas | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cvv | ⊢ V | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 1 | cv | ⊢ 𝑤 |
| 5 | 4 | cpw | ⊢ 𝒫 𝑤 |
| 6 | 5 | cpw | ⊢ 𝒫 𝒫 𝑤 |
| 7 | 3 | cv | ⊢ 𝑥 |
| 8 | c0 | ⊢ ∅ | |
| 9 | 7 8 | wne | ⊢ 𝑥 ≠ ∅ |
| 10 | 8 7 | wnel | ⊢ ∅ ∉ 𝑥 |
| 11 | vy | ⊢ 𝑦 | |
| 12 | vz | ⊢ 𝑧 | |
| 13 | 11 | cv | ⊢ 𝑦 |
| 14 | 12 | cv | ⊢ 𝑧 |
| 15 | 13 14 | cin | ⊢ ( 𝑦 ∩ 𝑧 ) |
| 16 | 15 | cpw | ⊢ 𝒫 ( 𝑦 ∩ 𝑧 ) |
| 17 | 7 16 | cin | ⊢ ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) |
| 18 | 17 8 | wne | ⊢ ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ |
| 19 | 18 12 7 | wral | ⊢ ∀ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ |
| 20 | 19 11 7 | wral | ⊢ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ |
| 21 | 9 10 20 | w3a | ⊢ ( 𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) |
| 22 | 21 3 6 | crab | ⊢ { 𝑥 ∈ 𝒫 𝒫 𝑤 ∣ ( 𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) } |
| 23 | 1 2 22 | cmpt | ⊢ ( 𝑤 ∈ V ↦ { 𝑥 ∈ 𝒫 𝒫 𝑤 ∣ ( 𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) } ) |
| 24 | 0 23 | wceq | ⊢ fBas = ( 𝑤 ∈ V ↦ { 𝑥 ∈ 𝒫 𝒫 𝑤 ∣ ( 𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑥 ∩ 𝒫 ( 𝑦 ∩ 𝑧 ) ) ≠ ∅ ) } ) |