This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Stefan O'Rear, 11-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fbas | |- fBas = ( w e. _V |-> { x e. ~P ~P w | ( x =/= (/) /\ (/) e/ x /\ A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfbas | |- fBas |
|
| 1 | vw | |- w |
|
| 2 | cvv | |- _V |
|
| 3 | vx | |- x |
|
| 4 | 1 | cv | |- w |
| 5 | 4 | cpw | |- ~P w |
| 6 | 5 | cpw | |- ~P ~P w |
| 7 | 3 | cv | |- x |
| 8 | c0 | |- (/) |
|
| 9 | 7 8 | wne | |- x =/= (/) |
| 10 | 8 7 | wnel | |- (/) e/ x |
| 11 | vy | |- y |
|
| 12 | vz | |- z |
|
| 13 | 11 | cv | |- y |
| 14 | 12 | cv | |- z |
| 15 | 13 14 | cin | |- ( y i^i z ) |
| 16 | 15 | cpw | |- ~P ( y i^i z ) |
| 17 | 7 16 | cin | |- ( x i^i ~P ( y i^i z ) ) |
| 18 | 17 8 | wne | |- ( x i^i ~P ( y i^i z ) ) =/= (/) |
| 19 | 18 12 7 | wral | |- A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) |
| 20 | 19 11 7 | wral | |- A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) |
| 21 | 9 10 20 | w3a | |- ( x =/= (/) /\ (/) e/ x /\ A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) ) |
| 22 | 21 3 6 | crab | |- { x e. ~P ~P w | ( x =/= (/) /\ (/) e/ x /\ A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) ) } |
| 23 | 1 2 22 | cmpt | |- ( w e. _V |-> { x e. ~P ~P w | ( x =/= (/) /\ (/) e/ x /\ A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) ) } ) |
| 24 | 0 23 | wceq | |- fBas = ( w e. _V |-> { x e. ~P ~P w | ( x =/= (/) /\ (/) e/ x /\ A. y e. x A. z e. x ( x i^i ~P ( y i^i z ) ) =/= (/) ) } ) |