This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Definition df-fg
Description: Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 11-Jul-2015)
|
|
Ref |
Expression |
|
Assertion |
df-fg |
|
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfg |
|
| 1 |
|
vw |
|
| 2 |
|
cvv |
|
| 3 |
|
vx |
|
| 4 |
|
cfbas |
|
| 5 |
1
|
cv |
|
| 6 |
5 4
|
cfv |
|
| 7 |
|
vy |
|
| 8 |
5
|
cpw |
|
| 9 |
3
|
cv |
|
| 10 |
7
|
cv |
|
| 11 |
10
|
cpw |
|
| 12 |
9 11
|
cin |
|
| 13 |
|
c0 |
|
| 14 |
12 13
|
wne |
|
| 15 |
14 7 8
|
crab |
|
| 16 |
1 3 2 6 15
|
cmpo |
|
| 17 |
0 16
|
wceq |
|