This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
rabss2
Metamath Proof Explorer
Description: Subclass law for restricted abstraction. (Contributed by NM , 18-Dec-2004) (Proof shortened by Andrew Salmon , 26-Jun-2011) Avoid
axioms. (Revised by TM , 1-Feb-2026)
Ref
Expression
Assertion
rabss2
⊢ A ⊆ B → x ∈ A | φ ⊆ x ∈ B | φ
Proof
Step
Hyp
Ref
Expression
1
ssel
⊢ A ⊆ B → x ∈ A → x ∈ B
2
1
anim1d
⊢ A ⊆ B → x ∈ A ∧ φ → x ∈ B ∧ φ
3
2
ss2abdv
⊢ A ⊆ B → x | x ∈ A ∧ φ ⊆ x | x ∈ B ∧ φ
4
df-rab
⊢ x ∈ A | φ = x | x ∈ A ∧ φ
5
df-rab
⊢ x ∈ B | φ = x | x ∈ B ∧ φ
6
3 4 5
3sstr4g
⊢ A ⊆ B → x ∈ A | φ ⊆ x ∈ B | φ