This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
cbvrexsvwOLD
Metamath Proof Explorer
Description: Obsolete version of cbvrexsvw as of 8-Mar-2025. (Contributed by NM , 20-Nov-2005) Avoid ax-13 . (Revised by GG , 10-Jan-2024)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Assertion
cbvrexsvwOLD
⊢ ∃ x ∈ A φ ↔ ∃ y ∈ A y x φ
Proof
Step
Hyp
Ref
Expression
1
nfv
⊢ Ⅎ z φ
2
nfs1v
⊢ Ⅎ x z x φ
3
sbequ12
⊢ x = z → φ ↔ z x φ
4
1 2 3
cbvrexw
⊢ ∃ x ∈ A φ ↔ ∃ z ∈ A z x φ
5
nfv
⊢ Ⅎ y z x φ
6
nfv
⊢ Ⅎ z y x φ
7
sbequ
⊢ z = y → z x φ ↔ y x φ
8
5 6 7
cbvrexw
⊢ ∃ z ∈ A z x φ ↔ ∃ y ∈ A y x φ
9
4 8
bitri
⊢ ∃ x ∈ A φ ↔ ∃ y ∈ A y x φ