This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
rexeq
Metamath Proof Explorer
Description: Equality theorem for restricted existential quantifier. (Contributed by NM , 29-Oct-1995) Remove usage of ax-10 , ax-11 , and ax-12 .
(Revised by Steven Nguyen , 30-Apr-2023) Shorten other proofs.
(Revised by Wolf Lammen , 8-Mar-2025)
Ref
Expression
Assertion
rexeq
⊢ A = B → ∃ x ∈ A φ ↔ ∃ x ∈ B φ
Proof
Step
Hyp
Ref
Expression
1
dfcleq
⊢ A = B ↔ ∀ x x ∈ A ↔ x ∈ B
2
anbi1
⊢ x ∈ A ↔ x ∈ B → x ∈ A ∧ φ ↔ x ∈ B ∧ φ
3
2
alexbii
⊢ ∀ x x ∈ A ↔ x ∈ B → ∃ x x ∈ A ∧ φ ↔ ∃ x x ∈ B ∧ φ
4
1 3
sylbi
⊢ A = B → ∃ x x ∈ A ∧ φ ↔ ∃ x x ∈ B ∧ φ
5
df-rex
⊢ ∃ x ∈ A φ ↔ ∃ x x ∈ A ∧ φ
6
df-rex
⊢ ∃ x ∈ B φ ↔ ∃ x x ∈ B ∧ φ
7
4 5 6
3bitr4g
⊢ A = B → ∃ x ∈ A φ ↔ ∃ x ∈ B φ