This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rederivation of ax-c15 from ax12v (without using ax-c15 or the full ax-12 ). Thus, the hypothesis ( ax12v ) provides an alternate axiom that can be used in place of ax-c15 . See also axc15 . (Contributed by NM, 2-Feb-2007) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ax12v2-o.1 | ||
| Assertion | ax12v2-o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12v2-o.1 | ||
| 2 | ax6ev | ||
| 3 | equequ2 | ||
| 4 | 3 | adantl | |
| 5 | dveeq2-o | ||
| 6 | 5 | imp | |
| 7 | nfa1-o | ||
| 8 | 3 | imbi1d | |
| 9 | 8 | sps-o | |
| 10 | 7 9 | albid | |
| 11 | 6 10 | syl | |
| 12 | 11 | imbi2d | |
| 13 | 4 12 | imbi12d | |
| 14 | 1 13 | mpbii | |
| 15 | 14 | ex | |
| 16 | 15 | exlimdv | |
| 17 | 2 16 | mpi |