This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem albid

Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses albid.1 x φ
albid.2 φ ψ χ
Assertion albid φ x ψ x χ

Proof

Step Hyp Ref Expression
1 albid.1 x φ
2 albid.2 φ ψ χ
3 1 nf5ri φ x φ
4 3 2 albidh φ x ψ x χ