This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rederivation of ax-c15 from ax12v (without using ax-c15 or the full ax-12 ). Thus, the hypothesis ( ax12v ) provides an alternate axiom that can be used in place of ax-c15 . See also axc15 . (Contributed by NM, 2-Feb-2007) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ax12v2-o.1 | |- ( x = z -> ( ph -> A. x ( x = z -> ph ) ) ) |
|
| Assertion | ax12v2-o | |- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12v2-o.1 | |- ( x = z -> ( ph -> A. x ( x = z -> ph ) ) ) |
|
| 2 | ax6ev | |- E. z z = y |
|
| 3 | equequ2 | |- ( z = y -> ( x = z <-> x = y ) ) |
|
| 4 | 3 | adantl | |- ( ( -. A. x x = y /\ z = y ) -> ( x = z <-> x = y ) ) |
| 5 | dveeq2-o | |- ( -. A. x x = y -> ( z = y -> A. x z = y ) ) |
|
| 6 | 5 | imp | |- ( ( -. A. x x = y /\ z = y ) -> A. x z = y ) |
| 7 | nfa1-o | |- F/ x A. x z = y |
|
| 8 | 3 | imbi1d | |- ( z = y -> ( ( x = z -> ph ) <-> ( x = y -> ph ) ) ) |
| 9 | 8 | sps-o | |- ( A. x z = y -> ( ( x = z -> ph ) <-> ( x = y -> ph ) ) ) |
| 10 | 7 9 | albid | |- ( A. x z = y -> ( A. x ( x = z -> ph ) <-> A. x ( x = y -> ph ) ) ) |
| 11 | 6 10 | syl | |- ( ( -. A. x x = y /\ z = y ) -> ( A. x ( x = z -> ph ) <-> A. x ( x = y -> ph ) ) ) |
| 12 | 11 | imbi2d | |- ( ( -. A. x x = y /\ z = y ) -> ( ( ph -> A. x ( x = z -> ph ) ) <-> ( ph -> A. x ( x = y -> ph ) ) ) ) |
| 13 | 4 12 | imbi12d | |- ( ( -. A. x x = y /\ z = y ) -> ( ( x = z -> ( ph -> A. x ( x = z -> ph ) ) ) <-> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) ) |
| 14 | 1 13 | mpbii | |- ( ( -. A. x x = y /\ z = y ) -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |
| 15 | 14 | ex | |- ( -. A. x x = y -> ( z = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) ) |
| 16 | 15 | exlimdv | |- ( -. A. x x = y -> ( E. z z = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) ) |
| 17 | 2 16 | mpi | |- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |