This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sylnib

Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013)

Ref Expression
Hypotheses sylnib.1 φ ¬ ψ
sylnib.2 ψ χ
Assertion sylnib φ ¬ χ

Proof

Step Hyp Ref Expression
1 sylnib.1 φ ¬ ψ
2 sylnib.2 ψ χ
3 2 biimpri χ ψ
4 1 3 nsyl φ ¬ χ