This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Walks, paths and cycles
Trails
istrl
Metamath Proof Explorer
Description: Conditions for a pair of classes/functions to be a trail (in an
undirected graph). (Contributed by Alexander van der Vekens , 20-Oct-2017) (Revised by AV , 28-Dec-2020) (Revised by AV , 29-Oct-2021)
Ref
Expression
Assertion
istrl
⊢ F Trails ⁡ G P ↔ F Walks ⁡ G P ∧ Fun ⁡ F -1
Proof
Step
Hyp
Ref
Expression
1
trlsfval
⊢ Trails ⁡ G = f p | f Walks ⁡ G p ∧ Fun ⁡ f -1
2
cnveq
⊢ f = F → f -1 = F -1
3
2
funeqd
⊢ f = F → Fun ⁡ f -1 ↔ Fun ⁡ F -1
4
3
adantr
⊢ f = F ∧ p = P → Fun ⁡ f -1 ↔ Fun ⁡ F -1
5
relwlk
⊢ Rel ⁡ Walks ⁡ G
6
1 4 5
brfvopabrbr
⊢ F Trails ⁡ G P ↔ F Walks ⁡ G P ∧ Fun ⁡ F -1