This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Z/nZ structure. It is defined as the quotient ring ZZ / n ZZ , with an "artificial" ordering added to make it a Toset . (In other words, Z/nZ is aring with anorder , but it is not anordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znval.s | |- S = ( RSpan ` ZZring ) |
|
| znval.u | |- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
||
| znval.y | |- Y = ( Z/nZ ` N ) |
||
| znval.f | |- F = ( ( ZRHom ` U ) |` W ) |
||
| znval.w | |- W = if ( N = 0 , ZZ , ( 0 ..^ N ) ) |
||
| znle.l | |- .<_ = ( le ` Y ) |
||
| Assertion | znle | |- ( N e. NN0 -> .<_ = ( ( F o. <_ ) o. `' F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval.s | |- S = ( RSpan ` ZZring ) |
|
| 2 | znval.u | |- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
|
| 3 | znval.y | |- Y = ( Z/nZ ` N ) |
|
| 4 | znval.f | |- F = ( ( ZRHom ` U ) |` W ) |
|
| 5 | znval.w | |- W = if ( N = 0 , ZZ , ( 0 ..^ N ) ) |
|
| 6 | znle.l | |- .<_ = ( le ` Y ) |
|
| 7 | eqid | |- ( ( F o. <_ ) o. `' F ) = ( ( F o. <_ ) o. `' F ) |
|
| 8 | 1 2 3 4 5 7 | znval | |- ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , ( ( F o. <_ ) o. `' F ) >. ) ) |
| 9 | 8 | fveq2d | |- ( N e. NN0 -> ( le ` Y ) = ( le ` ( U sSet <. ( le ` ndx ) , ( ( F o. <_ ) o. `' F ) >. ) ) ) |
| 10 | 2 | ovexi | |- U e. _V |
| 11 | fvex | |- ( ZRHom ` U ) e. _V |
|
| 12 | 11 | resex | |- ( ( ZRHom ` U ) |` W ) e. _V |
| 13 | 4 12 | eqeltri | |- F e. _V |
| 14 | xrex | |- RR* e. _V |
|
| 15 | 14 14 | xpex | |- ( RR* X. RR* ) e. _V |
| 16 | lerelxr | |- <_ C_ ( RR* X. RR* ) |
|
| 17 | 15 16 | ssexi | |- <_ e. _V |
| 18 | 13 17 | coex | |- ( F o. <_ ) e. _V |
| 19 | 13 | cnvex | |- `' F e. _V |
| 20 | 18 19 | coex | |- ( ( F o. <_ ) o. `' F ) e. _V |
| 21 | pleid | |- le = Slot ( le ` ndx ) |
|
| 22 | 21 | setsid | |- ( ( U e. _V /\ ( ( F o. <_ ) o. `' F ) e. _V ) -> ( ( F o. <_ ) o. `' F ) = ( le ` ( U sSet <. ( le ` ndx ) , ( ( F o. <_ ) o. `' F ) >. ) ) ) |
| 23 | 10 20 22 | mp2an | |- ( ( F o. <_ ) o. `' F ) = ( le ` ( U sSet <. ( le ` ndx ) , ( ( F o. <_ ) o. `' F ) >. ) ) |
| 24 | 9 6 23 | 3eqtr4g | |- ( N e. NN0 -> .<_ = ( ( F o. <_ ) o. `' F ) ) |