This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1ocpbl.f | |- ( ph -> F : V -1-1-onto-> X ) |
|
| Assertion | f1ocpbl | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( F ` A ) = ( F ` C ) /\ ( F ` B ) = ( F ` D ) ) -> ( F ` ( A .+ B ) ) = ( F ` ( C .+ D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocpbl.f | |- ( ph -> F : V -1-1-onto-> X ) |
|
| 2 | 1 | f1ocpbllem | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( F ` A ) = ( F ` C ) /\ ( F ` B ) = ( F ` D ) ) <-> ( A = C /\ B = D ) ) ) |
| 3 | oveq12 | |- ( ( A = C /\ B = D ) -> ( A .+ B ) = ( C .+ D ) ) |
|
| 4 | 3 | fveq2d | |- ( ( A = C /\ B = D ) -> ( F ` ( A .+ B ) ) = ( F ` ( C .+ D ) ) ) |
| 5 | 2 4 | biimtrdi | |- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( F ` A ) = ( F ` C ) /\ ( F ` B ) = ( F ` D ) ) -> ( F ` ( A .+ B ) ) = ( F ` ( C .+ D ) ) ) ) |