This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for Cartesian product over indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpiindi | |- ( A =/= (/) -> ( C X. |^|_ x e. A B ) = |^|_ x e. A ( C X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp | |- Rel ( C X. B ) |
|
| 2 | 1 | rgenw | |- A. x e. A Rel ( C X. B ) |
| 3 | r19.2z | |- ( ( A =/= (/) /\ A. x e. A Rel ( C X. B ) ) -> E. x e. A Rel ( C X. B ) ) |
|
| 4 | 2 3 | mpan2 | |- ( A =/= (/) -> E. x e. A Rel ( C X. B ) ) |
| 5 | reliin | |- ( E. x e. A Rel ( C X. B ) -> Rel |^|_ x e. A ( C X. B ) ) |
|
| 6 | 4 5 | syl | |- ( A =/= (/) -> Rel |^|_ x e. A ( C X. B ) ) |
| 7 | relxp | |- Rel ( C X. |^|_ x e. A B ) |
|
| 8 | 6 7 | jctil | |- ( A =/= (/) -> ( Rel ( C X. |^|_ x e. A B ) /\ Rel |^|_ x e. A ( C X. B ) ) ) |
| 9 | r19.28zv | |- ( A =/= (/) -> ( A. x e. A ( y e. C /\ z e. B ) <-> ( y e. C /\ A. x e. A z e. B ) ) ) |
|
| 10 | 9 | bicomd | |- ( A =/= (/) -> ( ( y e. C /\ A. x e. A z e. B ) <-> A. x e. A ( y e. C /\ z e. B ) ) ) |
| 11 | eliin | |- ( z e. _V -> ( z e. |^|_ x e. A B <-> A. x e. A z e. B ) ) |
|
| 12 | 11 | elv | |- ( z e. |^|_ x e. A B <-> A. x e. A z e. B ) |
| 13 | 12 | anbi2i | |- ( ( y e. C /\ z e. |^|_ x e. A B ) <-> ( y e. C /\ A. x e. A z e. B ) ) |
| 14 | opelxp | |- ( <. y , z >. e. ( C X. B ) <-> ( y e. C /\ z e. B ) ) |
|
| 15 | 14 | ralbii | |- ( A. x e. A <. y , z >. e. ( C X. B ) <-> A. x e. A ( y e. C /\ z e. B ) ) |
| 16 | 10 13 15 | 3bitr4g | |- ( A =/= (/) -> ( ( y e. C /\ z e. |^|_ x e. A B ) <-> A. x e. A <. y , z >. e. ( C X. B ) ) ) |
| 17 | opelxp | |- ( <. y , z >. e. ( C X. |^|_ x e. A B ) <-> ( y e. C /\ z e. |^|_ x e. A B ) ) |
|
| 18 | opex | |- <. y , z >. e. _V |
|
| 19 | eliin | |- ( <. y , z >. e. _V -> ( <. y , z >. e. |^|_ x e. A ( C X. B ) <-> A. x e. A <. y , z >. e. ( C X. B ) ) ) |
|
| 20 | 18 19 | ax-mp | |- ( <. y , z >. e. |^|_ x e. A ( C X. B ) <-> A. x e. A <. y , z >. e. ( C X. B ) ) |
| 21 | 16 17 20 | 3bitr4g | |- ( A =/= (/) -> ( <. y , z >. e. ( C X. |^|_ x e. A B ) <-> <. y , z >. e. |^|_ x e. A ( C X. B ) ) ) |
| 22 | 21 | eqrelrdv2 | |- ( ( ( Rel ( C X. |^|_ x e. A B ) /\ Rel |^|_ x e. A ( C X. B ) ) /\ A =/= (/) ) -> ( C X. |^|_ x e. A B ) = |^|_ x e. A ( C X. B ) ) |
| 23 | 8 22 | mpancom | |- ( A =/= (/) -> ( C X. |^|_ x e. A B ) = |^|_ x e. A ( C X. B ) ) |