This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnn0lenn0nn0 | |- ( ( M e. NN0* /\ N e. NN0 /\ M <_ N ) -> M e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 | |- ( M e. NN0* <-> ( M e. NN0 \/ M = +oo ) ) |
|
| 2 | 2a1 | |- ( M e. NN0 -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) |
|
| 3 | breq1 | |- ( M = +oo -> ( M <_ N <-> +oo <_ N ) ) |
|
| 4 | 3 | adantr | |- ( ( M = +oo /\ N e. NN0 ) -> ( M <_ N <-> +oo <_ N ) ) |
| 5 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 6 | 5 | rexrd | |- ( N e. NN0 -> N e. RR* ) |
| 7 | xgepnf | |- ( N e. RR* -> ( +oo <_ N <-> N = +oo ) ) |
|
| 8 | 6 7 | syl | |- ( N e. NN0 -> ( +oo <_ N <-> N = +oo ) ) |
| 9 | pnfnre | |- +oo e/ RR |
|
| 10 | eleq1 | |- ( N = +oo -> ( N e. NN0 <-> +oo e. NN0 ) ) |
|
| 11 | nn0re | |- ( +oo e. NN0 -> +oo e. RR ) |
|
| 12 | pm2.24nel | |- ( +oo e. RR -> ( +oo e/ RR -> M e. NN0 ) ) |
|
| 13 | 11 12 | syl | |- ( +oo e. NN0 -> ( +oo e/ RR -> M e. NN0 ) ) |
| 14 | 10 13 | biimtrdi | |- ( N = +oo -> ( N e. NN0 -> ( +oo e/ RR -> M e. NN0 ) ) ) |
| 15 | 14 | com13 | |- ( +oo e/ RR -> ( N e. NN0 -> ( N = +oo -> M e. NN0 ) ) ) |
| 16 | 9 15 | ax-mp | |- ( N e. NN0 -> ( N = +oo -> M e. NN0 ) ) |
| 17 | 8 16 | sylbid | |- ( N e. NN0 -> ( +oo <_ N -> M e. NN0 ) ) |
| 18 | 17 | adantl | |- ( ( M = +oo /\ N e. NN0 ) -> ( +oo <_ N -> M e. NN0 ) ) |
| 19 | 4 18 | sylbid | |- ( ( M = +oo /\ N e. NN0 ) -> ( M <_ N -> M e. NN0 ) ) |
| 20 | 19 | ex | |- ( M = +oo -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) |
| 21 | 2 20 | jaoi | |- ( ( M e. NN0 \/ M = +oo ) -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) |
| 22 | 1 21 | sylbi | |- ( M e. NN0* -> ( N e. NN0 -> ( M <_ N -> M e. NN0 ) ) ) |
| 23 | 22 | 3imp | |- ( ( M e. NN0* /\ N e. NN0 /\ M <_ N ) -> M e. NN0 ) |