This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of Suppes p. 83. (Contributed by NM, 15-Jun-2004) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | erdisj | |- ( R Er X -> ( [ A ] R = [ B ] R \/ ( [ A ] R i^i [ B ] R ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 | |- ( -. ( [ A ] R i^i [ B ] R ) = (/) <-> E. x x e. ( [ A ] R i^i [ B ] R ) ) |
|
| 2 | simpl | |- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> R Er X ) |
|
| 3 | elinel1 | |- ( x e. ( [ A ] R i^i [ B ] R ) -> x e. [ A ] R ) |
|
| 4 | 3 | adantl | |- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> x e. [ A ] R ) |
| 5 | vex | |- x e. _V |
|
| 6 | ecexr | |- ( x e. [ A ] R -> A e. _V ) |
|
| 7 | 4 6 | syl | |- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> A e. _V ) |
| 8 | elecg | |- ( ( x e. _V /\ A e. _V ) -> ( x e. [ A ] R <-> A R x ) ) |
|
| 9 | 5 7 8 | sylancr | |- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> ( x e. [ A ] R <-> A R x ) ) |
| 10 | 4 9 | mpbid | |- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> A R x ) |
| 11 | elinel2 | |- ( x e. ( [ A ] R i^i [ B ] R ) -> x e. [ B ] R ) |
|
| 12 | 11 | adantl | |- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> x e. [ B ] R ) |
| 13 | ecexr | |- ( x e. [ B ] R -> B e. _V ) |
|
| 14 | 12 13 | syl | |- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> B e. _V ) |
| 15 | elecg | |- ( ( x e. _V /\ B e. _V ) -> ( x e. [ B ] R <-> B R x ) ) |
|
| 16 | 5 14 15 | sylancr | |- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> ( x e. [ B ] R <-> B R x ) ) |
| 17 | 12 16 | mpbid | |- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> B R x ) |
| 18 | 2 10 17 | ertr4d | |- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> A R B ) |
| 19 | 2 18 | erthi | |- ( ( R Er X /\ x e. ( [ A ] R i^i [ B ] R ) ) -> [ A ] R = [ B ] R ) |
| 20 | 19 | ex | |- ( R Er X -> ( x e. ( [ A ] R i^i [ B ] R ) -> [ A ] R = [ B ] R ) ) |
| 21 | 20 | exlimdv | |- ( R Er X -> ( E. x x e. ( [ A ] R i^i [ B ] R ) -> [ A ] R = [ B ] R ) ) |
| 22 | 1 21 | biimtrid | |- ( R Er X -> ( -. ( [ A ] R i^i [ B ] R ) = (/) -> [ A ] R = [ B ] R ) ) |
| 23 | 22 | orrd | |- ( R Er X -> ( ( [ A ] R i^i [ B ] R ) = (/) \/ [ A ] R = [ B ] R ) ) |
| 24 | 23 | orcomd | |- ( R Er X -> ( [ A ] R = [ B ] R \/ ( [ A ] R i^i [ B ] R ) = (/) ) ) |