This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric function of an extended metric space is always continuous in the topology generated by it. In this variation of xmetdcn we use the metric topology instead of the order topology on RR* , which makes the theorem a bit stronger. Since +oo is an isolated point in the metric topology, this is saying that for any points A , B which are an infinite distance apart, there is a product neighborhood around <. A , B >. such that d ( a , b ) = +oo for any a near A and b near B , i.e., the distance function is locally constant +oo . (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmetdcn2.1 | |- J = ( MetOpen ` D ) |
|
| xmetdcn2.2 | |- C = ( dist ` RR*s ) |
||
| xmetdcn2.3 | |- K = ( MetOpen ` C ) |
||
| Assertion | xmetdcn2 | |- ( D e. ( *Met ` X ) -> D e. ( ( J tX J ) Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetdcn2.1 | |- J = ( MetOpen ` D ) |
|
| 2 | xmetdcn2.2 | |- C = ( dist ` RR*s ) |
|
| 3 | xmetdcn2.3 | |- K = ( MetOpen ` C ) |
|
| 4 | xmetf | |- ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 5 | rphalfcl | |- ( r e. RR+ -> ( r / 2 ) e. RR+ ) |
|
| 6 | simp-4l | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) /\ r e. RR+ ) /\ ( z e. X /\ w e. X ) ) /\ ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) ) -> D e. ( *Met ` X ) ) |
|
| 7 | simplrl | |- ( ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) /\ r e. RR+ ) -> x e. X ) |
|
| 8 | 7 | ad2antrr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) /\ r e. RR+ ) /\ ( z e. X /\ w e. X ) ) /\ ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) ) -> x e. X ) |
| 9 | simplrr | |- ( ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) /\ r e. RR+ ) -> y e. X ) |
|
| 10 | 9 | ad2antrr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) /\ r e. RR+ ) /\ ( z e. X /\ w e. X ) ) /\ ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) ) -> y e. X ) |
| 11 | simpllr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) /\ r e. RR+ ) /\ ( z e. X /\ w e. X ) ) /\ ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) ) -> r e. RR+ ) |
|
| 12 | simplrl | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) /\ r e. RR+ ) /\ ( z e. X /\ w e. X ) ) /\ ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) ) -> z e. X ) |
|
| 13 | simplrr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) /\ r e. RR+ ) /\ ( z e. X /\ w e. X ) ) /\ ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) ) -> w e. X ) |
|
| 14 | simprl | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) /\ r e. RR+ ) /\ ( z e. X /\ w e. X ) ) /\ ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) ) -> ( x D z ) < ( r / 2 ) ) |
|
| 15 | simprr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) /\ r e. RR+ ) /\ ( z e. X /\ w e. X ) ) /\ ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) ) -> ( y D w ) < ( r / 2 ) ) |
|
| 16 | 1 2 3 6 8 10 11 12 13 14 15 | metdcnlem | |- ( ( ( ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) /\ r e. RR+ ) /\ ( z e. X /\ w e. X ) ) /\ ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) ) -> ( ( x D y ) C ( z D w ) ) < r ) |
| 17 | 16 | ex | |- ( ( ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) /\ r e. RR+ ) /\ ( z e. X /\ w e. X ) ) -> ( ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) -> ( ( x D y ) C ( z D w ) ) < r ) ) |
| 18 | 17 | ralrimivva | |- ( ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) /\ r e. RR+ ) -> A. z e. X A. w e. X ( ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) -> ( ( x D y ) C ( z D w ) ) < r ) ) |
| 19 | breq2 | |- ( s = ( r / 2 ) -> ( ( x D z ) < s <-> ( x D z ) < ( r / 2 ) ) ) |
|
| 20 | breq2 | |- ( s = ( r / 2 ) -> ( ( y D w ) < s <-> ( y D w ) < ( r / 2 ) ) ) |
|
| 21 | 19 20 | anbi12d | |- ( s = ( r / 2 ) -> ( ( ( x D z ) < s /\ ( y D w ) < s ) <-> ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) ) ) |
| 22 | 21 | imbi1d | |- ( s = ( r / 2 ) -> ( ( ( ( x D z ) < s /\ ( y D w ) < s ) -> ( ( x D y ) C ( z D w ) ) < r ) <-> ( ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) -> ( ( x D y ) C ( z D w ) ) < r ) ) ) |
| 23 | 22 | 2ralbidv | |- ( s = ( r / 2 ) -> ( A. z e. X A. w e. X ( ( ( x D z ) < s /\ ( y D w ) < s ) -> ( ( x D y ) C ( z D w ) ) < r ) <-> A. z e. X A. w e. X ( ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) -> ( ( x D y ) C ( z D w ) ) < r ) ) ) |
| 24 | 23 | rspcev | |- ( ( ( r / 2 ) e. RR+ /\ A. z e. X A. w e. X ( ( ( x D z ) < ( r / 2 ) /\ ( y D w ) < ( r / 2 ) ) -> ( ( x D y ) C ( z D w ) ) < r ) ) -> E. s e. RR+ A. z e. X A. w e. X ( ( ( x D z ) < s /\ ( y D w ) < s ) -> ( ( x D y ) C ( z D w ) ) < r ) ) |
| 25 | 5 18 24 | syl2an2 | |- ( ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) /\ r e. RR+ ) -> E. s e. RR+ A. z e. X A. w e. X ( ( ( x D z ) < s /\ ( y D w ) < s ) -> ( ( x D y ) C ( z D w ) ) < r ) ) |
| 26 | 25 | ralrimiva | |- ( ( D e. ( *Met ` X ) /\ ( x e. X /\ y e. X ) ) -> A. r e. RR+ E. s e. RR+ A. z e. X A. w e. X ( ( ( x D z ) < s /\ ( y D w ) < s ) -> ( ( x D y ) C ( z D w ) ) < r ) ) |
| 27 | 26 | ralrimivva | |- ( D e. ( *Met ` X ) -> A. x e. X A. y e. X A. r e. RR+ E. s e. RR+ A. z e. X A. w e. X ( ( ( x D z ) < s /\ ( y D w ) < s ) -> ( ( x D y ) C ( z D w ) ) < r ) ) |
| 28 | id | |- ( D e. ( *Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 29 | 2 | xrsxmet | |- C e. ( *Met ` RR* ) |
| 30 | 29 | a1i | |- ( D e. ( *Met ` X ) -> C e. ( *Met ` RR* ) ) |
| 31 | 1 1 3 | txmetcn | |- ( ( D e. ( *Met ` X ) /\ D e. ( *Met ` X ) /\ C e. ( *Met ` RR* ) ) -> ( D e. ( ( J tX J ) Cn K ) <-> ( D : ( X X. X ) --> RR* /\ A. x e. X A. y e. X A. r e. RR+ E. s e. RR+ A. z e. X A. w e. X ( ( ( x D z ) < s /\ ( y D w ) < s ) -> ( ( x D y ) C ( z D w ) ) < r ) ) ) ) |
| 32 | 28 30 31 | mpd3an23 | |- ( D e. ( *Met ` X ) -> ( D e. ( ( J tX J ) Cn K ) <-> ( D : ( X X. X ) --> RR* /\ A. x e. X A. y e. X A. r e. RR+ E. s e. RR+ A. z e. X A. w e. X ( ( ( x D z ) < s /\ ( y D w ) < s ) -> ( ( x D y ) C ( z D w ) ) < r ) ) ) ) |
| 33 | 4 27 32 | mpbir2and | |- ( D e. ( *Met ` X ) -> D e. ( ( J tX J ) Cn K ) ) |