This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the compact-open topology, which is the natural topology on the set of continuous functions between two topological spaces. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-xko | |- ^ko = ( s e. Top , r e. Top |-> ( topGen ` ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cxko | |- ^ko |
|
| 1 | vs | |- s |
|
| 2 | ctop | |- Top |
|
| 3 | vr | |- r |
|
| 4 | ctg | |- topGen |
|
| 5 | cfi | |- fi |
|
| 6 | vk | |- k |
|
| 7 | vx | |- x |
|
| 8 | 3 | cv | |- r |
| 9 | 8 | cuni | |- U. r |
| 10 | 9 | cpw | |- ~P U. r |
| 11 | crest | |- |`t |
|
| 12 | 7 | cv | |- x |
| 13 | 8 12 11 | co | |- ( r |`t x ) |
| 14 | ccmp | |- Comp |
|
| 15 | 13 14 | wcel | |- ( r |`t x ) e. Comp |
| 16 | 15 7 10 | crab | |- { x e. ~P U. r | ( r |`t x ) e. Comp } |
| 17 | vv | |- v |
|
| 18 | 1 | cv | |- s |
| 19 | vf | |- f |
|
| 20 | ccn | |- Cn |
|
| 21 | 8 18 20 | co | |- ( r Cn s ) |
| 22 | 19 | cv | |- f |
| 23 | 6 | cv | |- k |
| 24 | 22 23 | cima | |- ( f " k ) |
| 25 | 17 | cv | |- v |
| 26 | 24 25 | wss | |- ( f " k ) C_ v |
| 27 | 26 19 21 | crab | |- { f e. ( r Cn s ) | ( f " k ) C_ v } |
| 28 | 6 17 16 18 27 | cmpo | |- ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) |
| 29 | 28 | crn | |- ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) |
| 30 | 29 5 | cfv | |- ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) |
| 31 | 30 4 | cfv | |- ( topGen ` ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) ) |
| 32 | 1 3 2 2 31 | cmpo | |- ( s e. Top , r e. Top |-> ( topGen ` ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) ) ) |
| 33 | 0 32 | wceq | |- ^ko = ( s e. Top , r e. Top |-> ( topGen ` ( fi ` ran ( k e. { x e. ~P U. r | ( r |`t x ) e. Comp } , v e. s |-> { f e. ( r Cn s ) | ( f " k ) C_ v } ) ) ) ) |