This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d . (Contributed by Alexander van der Vekens, 21-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xadd4d.1 | |- ( ph -> ( A e. RR* /\ A =/= -oo ) ) |
|
| xadd4d.2 | |- ( ph -> ( B e. RR* /\ B =/= -oo ) ) |
||
| xadd4d.3 | |- ( ph -> ( C e. RR* /\ C =/= -oo ) ) |
||
| xadd4d.4 | |- ( ph -> ( D e. RR* /\ D =/= -oo ) ) |
||
| Assertion | xadd4d | |- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( ( A +e C ) +e ( B +e D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xadd4d.1 | |- ( ph -> ( A e. RR* /\ A =/= -oo ) ) |
|
| 2 | xadd4d.2 | |- ( ph -> ( B e. RR* /\ B =/= -oo ) ) |
|
| 3 | xadd4d.3 | |- ( ph -> ( C e. RR* /\ C =/= -oo ) ) |
|
| 4 | xadd4d.4 | |- ( ph -> ( D e. RR* /\ D =/= -oo ) ) |
|
| 5 | xaddass | |- ( ( ( C e. RR* /\ C =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( ( C +e B ) +e D ) = ( C +e ( B +e D ) ) ) |
|
| 6 | 3 2 4 5 | syl3anc | |- ( ph -> ( ( C +e B ) +e D ) = ( C +e ( B +e D ) ) ) |
| 7 | 6 | oveq2d | |- ( ph -> ( A +e ( ( C +e B ) +e D ) ) = ( A +e ( C +e ( B +e D ) ) ) ) |
| 8 | 3 | simpld | |- ( ph -> C e. RR* ) |
| 9 | 4 | simpld | |- ( ph -> D e. RR* ) |
| 10 | 8 9 | xaddcld | |- ( ph -> ( C +e D ) e. RR* ) |
| 11 | xaddnemnf | |- ( ( ( C e. RR* /\ C =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( C +e D ) =/= -oo ) |
|
| 12 | 3 4 11 | syl2anc | |- ( ph -> ( C +e D ) =/= -oo ) |
| 13 | xaddass | |- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( ( C +e D ) e. RR* /\ ( C +e D ) =/= -oo ) ) -> ( ( A +e B ) +e ( C +e D ) ) = ( A +e ( B +e ( C +e D ) ) ) ) |
|
| 14 | 1 2 10 12 13 | syl112anc | |- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( A +e ( B +e ( C +e D ) ) ) ) |
| 15 | 2 | simpld | |- ( ph -> B e. RR* ) |
| 16 | xaddcom | |- ( ( C e. RR* /\ B e. RR* ) -> ( C +e B ) = ( B +e C ) ) |
|
| 17 | 8 15 16 | syl2anc | |- ( ph -> ( C +e B ) = ( B +e C ) ) |
| 18 | 17 | oveq1d | |- ( ph -> ( ( C +e B ) +e D ) = ( ( B +e C ) +e D ) ) |
| 19 | xaddass | |- ( ( ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( ( B +e C ) +e D ) = ( B +e ( C +e D ) ) ) |
|
| 20 | 2 3 4 19 | syl3anc | |- ( ph -> ( ( B +e C ) +e D ) = ( B +e ( C +e D ) ) ) |
| 21 | 18 20 | eqtr2d | |- ( ph -> ( B +e ( C +e D ) ) = ( ( C +e B ) +e D ) ) |
| 22 | 21 | oveq2d | |- ( ph -> ( A +e ( B +e ( C +e D ) ) ) = ( A +e ( ( C +e B ) +e D ) ) ) |
| 23 | 14 22 | eqtrd | |- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( A +e ( ( C +e B ) +e D ) ) ) |
| 24 | 15 9 | xaddcld | |- ( ph -> ( B +e D ) e. RR* ) |
| 25 | xaddnemnf | |- ( ( ( B e. RR* /\ B =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( B +e D ) =/= -oo ) |
|
| 26 | 2 4 25 | syl2anc | |- ( ph -> ( B +e D ) =/= -oo ) |
| 27 | xaddass | |- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) /\ ( ( B +e D ) e. RR* /\ ( B +e D ) =/= -oo ) ) -> ( ( A +e C ) +e ( B +e D ) ) = ( A +e ( C +e ( B +e D ) ) ) ) |
|
| 28 | 1 3 24 26 27 | syl112anc | |- ( ph -> ( ( A +e C ) +e ( B +e D ) ) = ( A +e ( C +e ( B +e D ) ) ) ) |
| 29 | 7 23 28 | 3eqtr4d | |- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( ( A +e C ) +e ( B +e D ) ) ) |