This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word of length two. (Contributed by AV, 20-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdlen2 | |- ( ( S e. V /\ T e. V ) -> ( W = { <. 0 , S >. , <. 1 , T >. } <-> ( ( W e. Word V /\ ( # ` W ) = 2 ) /\ ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdlen2i | |- ( ( S e. V /\ T e. V ) -> ( W = { <. 0 , S >. , <. 1 , T >. } -> ( ( W e. Word V /\ ( # ` W ) = 2 ) /\ ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) ) ) ) |
|
| 2 | wrd2pr2op | |- ( ( W e. Word V /\ ( # ` W ) = 2 ) -> W = { <. 0 , ( W ` 0 ) >. , <. 1 , ( W ` 1 ) >. } ) |
|
| 3 | opeq2 | |- ( ( W ` 0 ) = S -> <. 0 , ( W ` 0 ) >. = <. 0 , S >. ) |
|
| 4 | 3 | adantr | |- ( ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) -> <. 0 , ( W ` 0 ) >. = <. 0 , S >. ) |
| 5 | opeq2 | |- ( ( W ` 1 ) = T -> <. 1 , ( W ` 1 ) >. = <. 1 , T >. ) |
|
| 6 | 5 | adantl | |- ( ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) -> <. 1 , ( W ` 1 ) >. = <. 1 , T >. ) |
| 7 | 4 6 | preq12d | |- ( ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) -> { <. 0 , ( W ` 0 ) >. , <. 1 , ( W ` 1 ) >. } = { <. 0 , S >. , <. 1 , T >. } ) |
| 8 | 2 7 | sylan9eq | |- ( ( ( W e. Word V /\ ( # ` W ) = 2 ) /\ ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) ) -> W = { <. 0 , S >. , <. 1 , T >. } ) |
| 9 | 1 8 | impbid1 | |- ( ( S e. V /\ T e. V ) -> ( W = { <. 0 , S >. , <. 1 , T >. } <-> ( ( W e. Word V /\ ( # ` W ) = 2 ) /\ ( ( W ` 0 ) = S /\ ( W ` 1 ) = T ) ) ) ) |