This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices of a walk are connected by edges. (Contributed by Alexander van der Vekens, 22-Jul-2018) (Revised by AV, 2-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wlkvtxedg.e | |- E = ( Edg ` G ) |
|
| Assertion | wlkvtxedg | |- ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. E { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkvtxedg.e | |- E = ( Edg ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 2 | wlkvtxiedg | |- ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran ( iEdg ` G ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |
| 4 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 5 | 1 4 | eqtr2i | |- ran ( iEdg ` G ) = E |
| 6 | 5 | rexeqi | |- ( E. e e. ran ( iEdg ` G ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e <-> E. e e. E { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |
| 7 | 6 | ralbii | |- ( A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran ( iEdg ` G ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e <-> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. E { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |
| 8 | 3 7 | sylib | |- ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. E { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |