This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018) (Revised by AV, 2-Jan-2021) (Proof shortened by AV, 4-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wlkvtxeledg.i | |- I = ( iEdg ` G ) |
|
| Assertion | wlkvtxiedg | |- ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkvtxeledg.i | |- I = ( iEdg ` G ) |
|
| 2 | 1 | wlkvtxeledg | |- ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
| 3 | fvex | |- ( P ` k ) e. _V |
|
| 4 | 3 | prnz | |- { ( P ` k ) , ( P ` ( k + 1 ) ) } =/= (/) |
| 5 | ssn0 | |- ( ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } =/= (/) ) -> ( I ` ( F ` k ) ) =/= (/) ) |
|
| 6 | 4 5 | mpan2 | |- ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) -> ( I ` ( F ` k ) ) =/= (/) ) |
| 7 | 6 | adantl | |- ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I ` ( F ` k ) ) =/= (/) ) |
| 8 | fvn0fvelrn | |- ( ( I ` ( F ` k ) ) =/= (/) -> ( I ` ( F ` k ) ) e. ran I ) |
|
| 9 | 7 8 | syl | |- ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I ` ( F ` k ) ) e. ran I ) |
| 10 | sseq2 | |- ( e = ( I ` ( F ` k ) ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
|
| 11 | 10 | adantl | |- ( ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ e = ( I ` ( F ` k ) ) ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 12 | simpr | |- ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
|
| 13 | 9 11 12 | rspcedvd | |- ( ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |
| 14 | 13 | ex | |- ( ( F ( Walks ` G ) P /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) -> E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) ) |
| 15 | 14 | ralimdva | |- ( F ( Walks ` G ) P -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) ) |
| 16 | 2 15 | mpd | |- ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |