This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices of a walk are connected by edges. (Contributed by Alexander van der Vekens, 22-Jul-2018) (Revised by AV, 2-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wlkvtxedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| Assertion | wlkvtxedg | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒 ∈ 𝐸 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkvtxedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | 2 | wlkvtxiedg | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) |
| 4 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 5 | 1 4 | eqtr2i | ⊢ ran ( iEdg ‘ 𝐺 ) = 𝐸 |
| 6 | 5 | rexeqi | ⊢ ( ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ 𝐸 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒 ∈ ran ( iEdg ‘ 𝐺 ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ↔ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒 ∈ 𝐸 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) |
| 8 | 3 7 | sylib | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∃ 𝑒 ∈ 𝐸 { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ 𝑒 ) |