This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of vertices of a walk cannot be empty, i.e. a walk always consists of at least one vertex. (Contributed by Alexander van der Vekens, 19-Jul-2018) (Revised by AV, 2-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wlkn0 | |- ( F ( Walks ` G ) P -> P =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | 1 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 3 | fdm | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> dom P = ( 0 ... ( # ` F ) ) ) |
|
| 4 | 3 | eqcomd | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( 0 ... ( # ` F ) ) = dom P ) |
| 5 | 2 4 | syl | |- ( F ( Walks ` G ) P -> ( 0 ... ( # ` F ) ) = dom P ) |
| 6 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 7 | elnn0uz | |- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( ZZ>= ` 0 ) ) |
|
| 8 | fzn0 | |- ( ( 0 ... ( # ` F ) ) =/= (/) <-> ( # ` F ) e. ( ZZ>= ` 0 ) ) |
|
| 9 | 7 8 | sylbb2 | |- ( ( # ` F ) e. NN0 -> ( 0 ... ( # ` F ) ) =/= (/) ) |
| 10 | 6 9 | syl | |- ( F ( Walks ` G ) P -> ( 0 ... ( # ` F ) ) =/= (/) ) |
| 11 | 5 10 | eqnetrrd | |- ( F ( Walks ` G ) P -> dom P =/= (/) ) |
| 12 | frel | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Rel P ) |
|
| 13 | 2 12 | syl | |- ( F ( Walks ` G ) P -> Rel P ) |
| 14 | reldm0 | |- ( Rel P -> ( P = (/) <-> dom P = (/) ) ) |
|
| 15 | 14 | necon3bid | |- ( Rel P -> ( P =/= (/) <-> dom P =/= (/) ) ) |
| 16 | 13 15 | syl | |- ( F ( Walks ` G ) P -> ( P =/= (/) <-> dom P =/= (/) ) ) |
| 17 | 11 16 | mpbird | |- ( F ( Walks ` G ) P -> P =/= (/) ) |