This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of edges of a walk is the number of its vertices minus 1. (Contributed by Alexander van der Vekens, 1-Jul-2018) (Revised by AV, 2-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wlklenvm1 | |- ( F ( Walks ` G ) P -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlklenvp1 | |- ( F ( Walks ` G ) P -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
|
| 2 | oveq1 | |- ( ( # ` P ) = ( ( # ` F ) + 1 ) -> ( ( # ` P ) - 1 ) = ( ( ( # ` F ) + 1 ) - 1 ) ) |
|
| 3 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 4 | 3 | nn0cnd | |- ( F ( Walks ` G ) P -> ( # ` F ) e. CC ) |
| 5 | pncan1 | |- ( ( # ` F ) e. CC -> ( ( ( # ` F ) + 1 ) - 1 ) = ( # ` F ) ) |
|
| 6 | 4 5 | syl | |- ( F ( Walks ` G ) P -> ( ( ( # ` F ) + 1 ) - 1 ) = ( # ` F ) ) |
| 7 | 2 6 | sylan9eqr | |- ( ( F ( Walks ` G ) P /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( ( # ` P ) - 1 ) = ( # ` F ) ) |
| 8 | 7 | eqcomd | |- ( ( F ( Walks ` G ) P /\ ( # ` P ) = ( ( # ` F ) + 1 ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
| 9 | 1 8 | mpdan | |- ( F ( Walks ` G ) P -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |