This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of vertices of a walk cannot be empty, i.e. a walk always consists of at least one vertex. (Contributed by Alexander van der Vekens, 19-Jul-2018) (Revised by AV, 2-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wlkn0 | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 3 | fdm | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 4 | 3 | eqcomd | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( 0 ... ( ♯ ‘ 𝐹 ) ) = dom 𝑃 ) |
| 5 | 2 4 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = dom 𝑃 ) |
| 6 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 7 | elnn0uz | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 0 ) ) | |
| 8 | fzn0 | ⊢ ( ( 0 ... ( ♯ ‘ 𝐹 ) ) ≠ ∅ ↔ ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 0 ) ) | |
| 9 | 7 8 | sylbb2 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 0 ... ( ♯ ‘ 𝐹 ) ) ≠ ∅ ) |
| 10 | 6 9 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 0 ... ( ♯ ‘ 𝐹 ) ) ≠ ∅ ) |
| 11 | 5 10 | eqnetrrd | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → dom 𝑃 ≠ ∅ ) |
| 12 | frel | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → Rel 𝑃 ) | |
| 13 | 2 12 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → Rel 𝑃 ) |
| 14 | reldm0 | ⊢ ( Rel 𝑃 → ( 𝑃 = ∅ ↔ dom 𝑃 = ∅ ) ) | |
| 15 | 14 | necon3bid | ⊢ ( Rel 𝑃 → ( 𝑃 ≠ ∅ ↔ dom 𝑃 ≠ ∅ ) ) |
| 16 | 13 15 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑃 ≠ ∅ ↔ dom 𝑃 ≠ ∅ ) ) |
| 17 | 11 16 | mpbird | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 ≠ ∅ ) |