This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 24-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frpoins2fg.1 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
|
| frpoins2fg.2 | |- F/ y ps |
||
| frpoins2fg.3 | |- ( y = z -> ( ph <-> ps ) ) |
||
| Assertion | frpoins2fg | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> A. y e. A ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frpoins2fg.1 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
|
| 2 | frpoins2fg.2 | |- F/ y ps |
|
| 3 | frpoins2fg.3 | |- ( y = z -> ( ph <-> ps ) ) |
|
| 4 | sbsbc | |- ( [ z / y ] ph <-> [. z / y ]. ph ) |
|
| 5 | 2 3 | sbiev | |- ( [ z / y ] ph <-> ps ) |
| 6 | 4 5 | bitr3i | |- ( [. z / y ]. ph <-> ps ) |
| 7 | 6 | ralbii | |- ( A. z e. Pred ( R , A , y ) [. z / y ]. ph <-> A. z e. Pred ( R , A , y ) ps ) |
| 8 | 1 | adantl | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ y e. A ) -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
| 9 | 7 8 | biimtrid | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ y e. A ) -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) |
| 10 | 9 | frpoinsg | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> A. y e. A ph ) |