This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of vtocl4ga as of 31-May-2025. (Contributed by AV, 22-Jan-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl4ga.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| vtocl4ga.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
| vtocl4ga.3 | |- ( z = C -> ( ch <-> rh ) ) |
||
| vtocl4ga.4 | |- ( w = D -> ( rh <-> th ) ) |
||
| vtocl4ga.5 | |- ( ( ( x e. Q /\ y e. R ) /\ ( z e. S /\ w e. T ) ) -> ph ) |
||
| Assertion | vtocl4gaOLD | |- ( ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ D e. T ) ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl4ga.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | vtocl4ga.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 3 | vtocl4ga.3 | |- ( z = C -> ( ch <-> rh ) ) |
|
| 4 | vtocl4ga.4 | |- ( w = D -> ( rh <-> th ) ) |
|
| 5 | vtocl4ga.5 | |- ( ( ( x e. Q /\ y e. R ) /\ ( z e. S /\ w e. T ) ) -> ph ) |
|
| 6 | eleq1 | |- ( x = A -> ( x e. Q <-> A e. Q ) ) |
|
| 7 | 6 | anbi1d | |- ( x = A -> ( ( x e. Q /\ y e. R ) <-> ( A e. Q /\ y e. R ) ) ) |
| 8 | 7 | anbi1d | |- ( x = A -> ( ( ( x e. Q /\ y e. R ) /\ ( z e. S /\ w e. T ) ) <-> ( ( A e. Q /\ y e. R ) /\ ( z e. S /\ w e. T ) ) ) ) |
| 9 | 8 1 | imbi12d | |- ( x = A -> ( ( ( ( x e. Q /\ y e. R ) /\ ( z e. S /\ w e. T ) ) -> ph ) <-> ( ( ( A e. Q /\ y e. R ) /\ ( z e. S /\ w e. T ) ) -> ps ) ) ) |
| 10 | eleq1 | |- ( y = B -> ( y e. R <-> B e. R ) ) |
|
| 11 | 10 | anbi2d | |- ( y = B -> ( ( A e. Q /\ y e. R ) <-> ( A e. Q /\ B e. R ) ) ) |
| 12 | 11 | anbi1d | |- ( y = B -> ( ( ( A e. Q /\ y e. R ) /\ ( z e. S /\ w e. T ) ) <-> ( ( A e. Q /\ B e. R ) /\ ( z e. S /\ w e. T ) ) ) ) |
| 13 | 12 2 | imbi12d | |- ( y = B -> ( ( ( ( A e. Q /\ y e. R ) /\ ( z e. S /\ w e. T ) ) -> ps ) <-> ( ( ( A e. Q /\ B e. R ) /\ ( z e. S /\ w e. T ) ) -> ch ) ) ) |
| 14 | eleq1 | |- ( z = C -> ( z e. S <-> C e. S ) ) |
|
| 15 | 14 | anbi1d | |- ( z = C -> ( ( z e. S /\ w e. T ) <-> ( C e. S /\ w e. T ) ) ) |
| 16 | 15 | anbi2d | |- ( z = C -> ( ( ( A e. Q /\ B e. R ) /\ ( z e. S /\ w e. T ) ) <-> ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ w e. T ) ) ) ) |
| 17 | 16 3 | imbi12d | |- ( z = C -> ( ( ( ( A e. Q /\ B e. R ) /\ ( z e. S /\ w e. T ) ) -> ch ) <-> ( ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ w e. T ) ) -> rh ) ) ) |
| 18 | eleq1 | |- ( w = D -> ( w e. T <-> D e. T ) ) |
|
| 19 | 18 | anbi2d | |- ( w = D -> ( ( C e. S /\ w e. T ) <-> ( C e. S /\ D e. T ) ) ) |
| 20 | 19 | anbi2d | |- ( w = D -> ( ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ w e. T ) ) <-> ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ D e. T ) ) ) ) |
| 21 | 20 4 | imbi12d | |- ( w = D -> ( ( ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ w e. T ) ) -> rh ) <-> ( ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ D e. T ) ) -> th ) ) ) |
| 22 | 9 13 17 21 5 | vtocl4g | |- ( ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ D e. T ) ) -> ( ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ D e. T ) ) -> th ) ) |
| 23 | 22 | pm2.43i | |- ( ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ D e. T ) ) -> th ) |