This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019) (Proof shortened by Wolf Lammen, 31-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl4ga.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| vtocl4ga.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
| vtocl4ga.3 | |- ( z = C -> ( ch <-> rh ) ) |
||
| vtocl4ga.4 | |- ( w = D -> ( rh <-> th ) ) |
||
| vtocl4ga.5 | |- ( ( ( x e. Q /\ y e. R ) /\ ( z e. S /\ w e. T ) ) -> ph ) |
||
| Assertion | vtocl4ga | |- ( ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ D e. T ) ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl4ga.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | vtocl4ga.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 3 | vtocl4ga.3 | |- ( z = C -> ( ch <-> rh ) ) |
|
| 4 | vtocl4ga.4 | |- ( w = D -> ( rh <-> th ) ) |
|
| 5 | vtocl4ga.5 | |- ( ( ( x e. Q /\ y e. R ) /\ ( z e. S /\ w e. T ) ) -> ph ) |
|
| 6 | 3 | imbi2d | |- ( z = C -> ( ( ( A e. Q /\ B e. R ) -> ch ) <-> ( ( A e. Q /\ B e. R ) -> rh ) ) ) |
| 7 | 4 | imbi2d | |- ( w = D -> ( ( ( A e. Q /\ B e. R ) -> rh ) <-> ( ( A e. Q /\ B e. R ) -> th ) ) ) |
| 8 | 1 | imbi2d | |- ( x = A -> ( ( ( z e. S /\ w e. T ) -> ph ) <-> ( ( z e. S /\ w e. T ) -> ps ) ) ) |
| 9 | 2 | imbi2d | |- ( y = B -> ( ( ( z e. S /\ w e. T ) -> ps ) <-> ( ( z e. S /\ w e. T ) -> ch ) ) ) |
| 10 | 5 | ex | |- ( ( x e. Q /\ y e. R ) -> ( ( z e. S /\ w e. T ) -> ph ) ) |
| 11 | 8 9 10 | vtocl2ga | |- ( ( A e. Q /\ B e. R ) -> ( ( z e. S /\ w e. T ) -> ch ) ) |
| 12 | 11 | com12 | |- ( ( z e. S /\ w e. T ) -> ( ( A e. Q /\ B e. R ) -> ch ) ) |
| 13 | 6 7 12 | vtocl2ga | |- ( ( C e. S /\ D e. T ) -> ( ( A e. Q /\ B e. R ) -> th ) ) |
| 14 | 13 | impcom | |- ( ( ( A e. Q /\ B e. R ) /\ ( C e. S /\ D e. T ) ) -> th ) |