This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of vtocl4ga as of 31-May-2025. (Contributed by AV, 22-Jan-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl4ga.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| vtocl4ga.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| vtocl4ga.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜌 ) ) | ||
| vtocl4ga.4 | ⊢ ( 𝑤 = 𝐷 → ( 𝜌 ↔ 𝜃 ) ) | ||
| vtocl4ga.5 | ⊢ ( ( ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜑 ) | ||
| Assertion | vtocl4gaOLD | ⊢ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl4ga.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | vtocl4ga.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | vtocl4ga.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜌 ) ) | |
| 4 | vtocl4ga.4 | ⊢ ( 𝑤 = 𝐷 → ( 𝜌 ↔ 𝜃 ) ) | |
| 5 | vtocl4ga.5 | ⊢ ( ( ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜑 ) | |
| 6 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑄 ↔ 𝐴 ∈ 𝑄 ) ) | |
| 7 | 6 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ↔ ( 𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ) ) |
| 8 | 7 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ↔ ( ( 𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ) ) |
| 9 | 8 1 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜑 ) ↔ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜓 ) ) ) |
| 10 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑅 ↔ 𝐵 ∈ 𝑅 ) ) | |
| 11 | 10 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ↔ ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ) ) |
| 12 | 11 | anbi1d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ↔ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ) ) |
| 13 | 12 2 | imbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( ( 𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜓 ) ↔ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜒 ) ) ) |
| 14 | eleq1 | ⊢ ( 𝑧 = 𝐶 → ( 𝑧 ∈ 𝑆 ↔ 𝐶 ∈ 𝑆 ) ) | |
| 15 | 14 | anbi1d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ↔ ( 𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ) |
| 16 | 15 | anbi2d | ⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ↔ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ) ) |
| 17 | 16 3 | imbi12d | ⊢ ( 𝑧 = 𝐶 → ( ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜒 ) ↔ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜌 ) ) ) |
| 18 | eleq1 | ⊢ ( 𝑤 = 𝐷 → ( 𝑤 ∈ 𝑇 ↔ 𝐷 ∈ 𝑇 ) ) | |
| 19 | 18 | anbi2d | ⊢ ( 𝑤 = 𝐷 → ( ( 𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ↔ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) ) |
| 20 | 19 | anbi2d | ⊢ ( 𝑤 = 𝐷 → ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ↔ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) ) ) |
| 21 | 20 4 | imbi12d | ⊢ ( 𝑤 = 𝐷 → ( ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜌 ) ↔ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) → 𝜃 ) ) ) |
| 22 | 9 13 17 21 5 | vtocl4g | ⊢ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) → ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) → 𝜃 ) ) |
| 23 | 22 | pm2.43i | ⊢ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) → 𝜃 ) |