This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef .) (Contributed by NM, 7-Nov-2005) (Revised by Mario Carneiro, 11-Oct-2016) (Proof shortened by Wolf Lammen, 26-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vtoclegft | |- ( ( A e. B /\ F/ x ph /\ A. x ( x = A -> ph ) ) -> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd | |- ( x = A -> ( ph <-> ph ) ) |
|
| 2 | 1 | ax-gen | |- A. x ( x = A -> ( ph <-> ph ) ) |
| 3 | ceqsalt | |- ( ( F/ x ph /\ A. x ( x = A -> ( ph <-> ph ) ) /\ A e. B ) -> ( A. x ( x = A -> ph ) <-> ph ) ) |
|
| 4 | 2 3 | mp3an2 | |- ( ( F/ x ph /\ A e. B ) -> ( A. x ( x = A -> ph ) <-> ph ) ) |
| 5 | 4 | ancoms | |- ( ( A e. B /\ F/ x ph ) -> ( A. x ( x = A -> ph ) <-> ph ) ) |
| 6 | 5 | biimpd | |- ( ( A e. B /\ F/ x ph ) -> ( A. x ( x = A -> ph ) -> ph ) ) |
| 7 | 6 | 3impia | |- ( ( A e. B /\ F/ x ph /\ A. x ( x = A -> ph ) ) -> ph ) |