This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of vtocl3ga as of 31-May-2025. (Contributed by NM, 20-Aug-1995) Reduce axiom usage. (Revised by GG, 3-Oct-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl3ga.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| vtocl3ga.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
| vtocl3ga.3 | |- ( z = C -> ( ch <-> th ) ) |
||
| vtocl3ga.4 | |- ( ( x e. D /\ y e. R /\ z e. S ) -> ph ) |
||
| Assertion | vtocl3gaOLD | |- ( ( A e. D /\ B e. R /\ C e. S ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl3ga.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | vtocl3ga.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 3 | vtocl3ga.3 | |- ( z = C -> ( ch <-> th ) ) |
|
| 4 | vtocl3ga.4 | |- ( ( x e. D /\ y e. R /\ z e. S ) -> ph ) |
|
| 5 | eleq1 | |- ( x = A -> ( x e. D <-> A e. D ) ) |
|
| 6 | 5 | 3anbi1d | |- ( x = A -> ( ( x e. D /\ y e. R /\ z e. S ) <-> ( A e. D /\ y e. R /\ z e. S ) ) ) |
| 7 | 6 1 | imbi12d | |- ( x = A -> ( ( ( x e. D /\ y e. R /\ z e. S ) -> ph ) <-> ( ( A e. D /\ y e. R /\ z e. S ) -> ps ) ) ) |
| 8 | eleq1 | |- ( y = B -> ( y e. R <-> B e. R ) ) |
|
| 9 | 8 | 3anbi2d | |- ( y = B -> ( ( A e. D /\ y e. R /\ z e. S ) <-> ( A e. D /\ B e. R /\ z e. S ) ) ) |
| 10 | 9 2 | imbi12d | |- ( y = B -> ( ( ( A e. D /\ y e. R /\ z e. S ) -> ps ) <-> ( ( A e. D /\ B e. R /\ z e. S ) -> ch ) ) ) |
| 11 | eleq1 | |- ( z = C -> ( z e. S <-> C e. S ) ) |
|
| 12 | 11 | 3anbi3d | |- ( z = C -> ( ( A e. D /\ B e. R /\ z e. S ) <-> ( A e. D /\ B e. R /\ C e. S ) ) ) |
| 13 | 12 3 | imbi12d | |- ( z = C -> ( ( ( A e. D /\ B e. R /\ z e. S ) -> ch ) <-> ( ( A e. D /\ B e. R /\ C e. S ) -> th ) ) ) |
| 14 | 7 10 13 4 | vtocl3g | |- ( ( A e. D /\ B e. R /\ C e. S ) -> ( ( A e. D /\ B e. R /\ C e. S ) -> th ) ) |
| 15 | 14 | pm2.43i | |- ( ( A e. D /\ B e. R /\ C e. S ) -> th ) |