This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of vtocl3ga as of 31-May-2025. (Contributed by NM, 20-Aug-1995) Reduce axiom usage. (Revised by GG, 3-Oct-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl3ga.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| vtocl3ga.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| vtocl3ga.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | ||
| vtocl3ga.4 | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜑 ) | ||
| Assertion | vtocl3gaOLD | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl3ga.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | vtocl3ga.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | vtocl3ga.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | |
| 4 | vtocl3ga.4 | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜑 ) | |
| 5 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐷 ↔ 𝐴 ∈ 𝐷 ) ) | |
| 6 | 5 | 3anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) ) ) |
| 7 | 6 1 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜑 ) ↔ ( ( 𝐴 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜓 ) ) ) |
| 8 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑅 ↔ 𝐵 ∈ 𝑅 ) ) | |
| 9 | 8 | 3anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) ) ) |
| 10 | 9 2 | imbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜓 ) ↔ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜒 ) ) ) |
| 11 | eleq1 | ⊢ ( 𝑧 = 𝐶 → ( 𝑧 ∈ 𝑆 ↔ 𝐶 ∈ 𝑆 ) ) | |
| 12 | 11 | 3anbi3d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆 ) ) ) |
| 13 | 12 3 | imbi12d | ⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜒 ) ↔ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) ) ) |
| 14 | 7 10 13 4 | vtocl3g | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆 ) → ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) ) |
| 15 | 14 | pm2.43i | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) |