This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of a class for a setvar variable. Version of vtocl3gf with disjoint variable conditions instead of nonfreeness hypotheses, requiring fewer axioms. (Contributed by GG, 3-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl3g.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| vtocl3g.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
| vtocl3g.3 | |- ( z = C -> ( ch <-> th ) ) |
||
| vtocl3g.4 | |- ph |
||
| Assertion | vtocl3g | |- ( ( A e. V /\ B e. W /\ C e. X ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl3g.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | vtocl3g.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 3 | vtocl3g.3 | |- ( z = C -> ( ch <-> th ) ) |
|
| 4 | vtocl3g.4 | |- ph |
|
| 5 | elex | |- ( A e. V -> A e. _V ) |
|
| 6 | 2 | imbi2d | |- ( y = B -> ( ( A e. _V -> ps ) <-> ( A e. _V -> ch ) ) ) |
| 7 | 3 | imbi2d | |- ( z = C -> ( ( A e. _V -> ch ) <-> ( A e. _V -> th ) ) ) |
| 8 | 1 4 | vtoclg | |- ( A e. _V -> ps ) |
| 9 | 6 7 8 | vtocl2g | |- ( ( B e. W /\ C e. X ) -> ( A e. _V -> th ) ) |
| 10 | 5 9 | mpan9 | |- ( ( A e. V /\ ( B e. W /\ C e. X ) ) -> th ) |
| 11 | 10 | 3impb | |- ( ( A e. V /\ B e. W /\ C e. X ) -> th ) |