This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem r19.2zb

Description: A response to the notion that the condition A =/= (/) can be removed in r19.2z . Interestingly enough, ph does not figure in the left-hand side. (Contributed by Jeff Hankins, 24-Aug-2009)

Ref Expression
Assertion r19.2zb
|- ( A =/= (/) <-> ( A. x e. A ph -> E. x e. A ph ) )

Proof

Step Hyp Ref Expression
1 r19.2z
 |-  ( ( A =/= (/) /\ A. x e. A ph ) -> E. x e. A ph )
2 1 ex
 |-  ( A =/= (/) -> ( A. x e. A ph -> E. x e. A ph ) )
3 rzal
 |-  ( A = (/) -> A. x e. A ph )
4 3 necon3bi
 |-  ( -. A. x e. A ph -> A =/= (/) )
5 rexn0
 |-  ( E. x e. A ph -> A =/= (/) )
6 4 5 ja
 |-  ( ( A. x e. A ph -> E. x e. A ph ) -> A =/= (/) )
7 2 6 impbii
 |-  ( A =/= (/) <-> ( A. x e. A ph -> E. x e. A ph ) )