This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A response to the notion that the condition A =/= (/) can be removed in r19.2z . Interestingly enough, ph does not figure in the left-hand side. (Contributed by Jeff Hankins, 24-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.2zb | |- ( A =/= (/) <-> ( A. x e. A ph -> E. x e. A ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.2z | |- ( ( A =/= (/) /\ A. x e. A ph ) -> E. x e. A ph ) |
|
| 2 | 1 | ex | |- ( A =/= (/) -> ( A. x e. A ph -> E. x e. A ph ) ) |
| 3 | rzal | |- ( A = (/) -> A. x e. A ph ) |
|
| 4 | 3 | necon3bi | |- ( -. A. x e. A ph -> A =/= (/) ) |
| 5 | rexn0 | |- ( E. x e. A ph -> A =/= (/) ) |
|
| 6 | 4 5 | ja | |- ( ( A. x e. A ph -> E. x e. A ph ) -> A =/= (/) ) |
| 7 | 2 6 | impbii | |- ( A =/= (/) <-> ( A. x e. A ph -> E. x e. A ph ) ) |